Jumat, 16 April 2010

tugas 4A sistem logika

Hukum Aljabar Boolean

Hukum Aljabar Boolean

T1. Hukum Komutatif

(a) A + B = B + A

Pembuktian:

A

B

A+B

B+A

A+B = B+A

0

0

0

0

Ö

0

1

1

1

Ö

1

0

1

1

Ö

1

1

1

1

Ö

(b) A B = B A

Pembuktian:

A

B

AB

BA

AB = BA

0

0

0

0

Ö

0

1

0

0

Ö

1

0

0

0

Ö

1

1

1

1

Ö

T2. Hukum Asosiatif

(a) (A + B) + C = A + (B + C)

Pembuktian:

A

B

C

A+B

B+C

(A+B)+C

A+(B+C)

(A+B)+C=A+(B+C)

0

0

0

0

0

0

0

Ö

0

0

1

0

1

1

1

Ö

0

1

0

1

1

1

1

Ö

0

1

1

1

1

1

1

Ö

1

0

0

1

0

1

1

Ö

1

0

1

1

1

1

1

Ö

1

1

0

1

1

1

1

Ö

1

1

1

1

1

1

1

Ö

(b) (A B) C = A (B C)

Pembuktian:

A

B

C

A B

B C

(A B) C

A (B C)

(A B) C = A (B C)

0

0

0

0

0

0

0

Ö

0

0

1

0

0

0

0

Ö

0

1

0

0

0

0

0

Ö

0

1

1

0

1

0

0

Ö

1

0

0

0

0

0

0

Ö

1

0

1

0

0

0

0

Ö

1

1

0

0

0

0

0

Ö

1

1

1

1

1

1

1

Ö

T3. Hukum Distributif

(a) A (B + C) = A B + A C

Pembuktian:

A

B

C

B+C

A B

A C

A (B+C)

A B+A C

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1


(b) A + (B C) = (A + B) (A + C)

Pembuktian:

A

B

C

B C

A+B

A+C

A+(B C)

(A+B)(A+C)

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

T4. Hukum Identity

(a) A + A = A

Pembuktian:

A

A + A

A + A = A

0

0

Ö

0

0

Ö

1

1

Ö

1

1

Ö


(b) A A = A

Pembuktian:

A

A A

A A = A

0

0

Ö

0

0

Ö

1

1

Ö

1

1

Ö

T5.

(a)

Pembuktian:

A

B

B(invers)

A B

A B(invers)

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

1

1

1

1

0

1

0

1


(b)

Pembuktian:

A

B

B(invers)

A+B

A+B(invers)

0

0

1

0

1

0

0

1

0

1

0

0

1

0

1

1

1

1

1

1

0

1

1

1

T6. Hukum Redudansi

(a) A + A B = A

Pembuktian:

A

B

A B

A + A B

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

1


(b) A (A + B) = A

Pembuktian:

A

B

A + B

A (A + B)

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1

T7

(a) 0 + A = A

Pembuktian:

A

0 + A

0

0

0

0

1

1

1

1

(b) 0 A = 0

Pembuktian:

A

0 A

0

0

0

0

0

0

0

1

0

0

1

0

0

T8

(a) 1 + A = 1

A

1 + A

1

0

1

1

0

1

1

1

1

1

1

1

1


(b) 1 A = A

Pembuktian:

A

1 A

0

0

0

0

1

1

1

1

T9

(a)

Pembuktian:

A

A(invers)

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

1

1


(b)

A

A(invers)

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

T10

(a)

Pembuktian:

A

B

A(invers)

A(invers) B

A+B

A+A(invers) B

0

0

1

1

0

0

0

1

1

0

1

1

1

0

0

1

1

1

1

1

0

0

1

1


(b)

Pembuktian:

A

B

A(invers)

A(invers)+B

A B

A(A(invers)+B)

0

0

1

1

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

1

0

1

1

1

T11. TheoremaDe Morgan's

(a)

A

B

A(invers)

B(invers)

A+B

(A+B)invers

A(invers) B(invers)

0

0

1

1

0

1

1

0

1

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

0


(b)

A

B

A(invers)

B(invers)

A B

(AB)invers

A(invers)+B(invers)

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

1

0

1

1

1

1

0

0

1

0

0

Tidak ada komentar:

Posting Komentar