- Hukum Komutatif
- Hukum Asosiatif
- Hukum Distributif
- Hukum Identity
- Hukum Redudansi
- Theorem De Morgan's
Hukum Aljabar Boolean
T1. Hukum Komutatif
(a) A + B = B + A
Pembuktian:
A | B | A+B | B+A | A+B = B+A |
0 | 0 | 0 | 0 | Ö |
0 | 1 | 1 | 1 | Ö |
1 | 0 | 1 | 1 | Ö |
1 | 1 | 1 | 1 | Ö |
(b) A B = B A
Pembuktian:
A | B | AB | BA | AB = BA |
0 | 0 | 0 | 0 | Ö |
0 | 1 | 0 | 0 | Ö |
1 | 0 | 0 | 0 | Ö |
1 | 1 | 1 | 1 | Ö |
T2. Hukum Asosiatif
(a) (A + B) + C = A + (B + C)
Pembuktian:
A | B | C | A+B | B+C | (A+B)+C | A+(B+C) | (A+B)+C=A+(B+C) | |||
0 | 0 | 0 | 0 | 0 | 0 | 0 | Ö | |||
0 | 0 | 1 | 0 | 1 | 1 | 1 | Ö | |||
0 | 1 | 0 | 1 | 1 | 1 | 1 | Ö | |||
0 | 1 | 1 | 1 | 1 | 1 | 1 | Ö | |||
1 | 0 | 0 | 1 | 0 | 1 | 1 | Ö | |||
1 | 0 | 1 | 1 | 1 | 1 | 1 | Ö | |||
1 | 1 | 0 | 1 | 1 | 1 | 1 | Ö | |||
1 | 1 | 1 | 1 | 1 | 1 | 1 | Ö | |||
(b) (A B) C = A (B C)
Pembuktian:
A | B | C | A B | B C | (A B) C | A (B C) | (A B) C = A (B C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | Ö |
0 | 0 | 1 | 0 | 0 | 0 | 0 | Ö |
0 | 1 | 0 | 0 | 0 | 0 | 0 | Ö |
0 | 1 | 1 | 0 | 1 | 0 | 0 | Ö |
1 | 0 | 0 | 0 | 0 | 0 | 0 | Ö |
1 | 0 | 1 | 0 | 0 | 0 | 0 | Ö |
1 | 1 | 0 | 0 | 0 | 0 | 0 | Ö |
1 | 1 | 1 | 1 | 1 | 1 | 1 | Ö |
(a) A (B + C) = A B + A C
Pembuktian:
A | B | C | B+C | A B | A C | A (B+C) | A B+A C |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
(b) A + (B C) = (A + B) (A + C)
Pembuktian:
A | B | C | B C | A+B | A+C | A+(B C) | (A+B)(A+C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
T4. Hukum Identity
(a) A + A = A
Pembuktian:
A | A + A | A + A = A |
0 | 0 | Ö |
0 | 0 | Ö |
1 | 1 | Ö |
1 | 1 | Ö |
(b) A A = A
Pembuktian:
A | A A | A A = A |
0 | 0 | Ö |
0 | 0 | Ö |
1 | 1 | Ö |
1 | 1 | Ö |
T5.
(a)
Pembuktian:
A | B | B(invers) | A B | A B(invers) | |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
(b)
Pembuktian:
A | B | B(invers) | A+B | A+B(invers) | |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
T6. Hukum Redudansi
(a) A + A B = A
Pembuktian:
A | B | A B | A + A B |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 |
(b) A (A + B) = A
Pembuktian:
A | B | A + B | A (A + B) |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
T7
(a) 0 + A = A
Pembuktian:
A | 0 + A |
0 | 0 |
0 | 0 |
1 | 1 |
1 | 1 |
(b) 0 A = 0
Pembuktian:
A | 0 A | 0 |
0 | 0 | 0 |
0 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
T8
(a) 1 + A = 1
A | 1 + A | 1 |
0 | 1 | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
1 | 1 | 1 |
(b) 1 A = A
Pembuktian:
A | 1 A |
0 | 0 |
0 | 0 |
1 | 1 |
1 | 1 |
T9
(a)
Pembuktian:
A | A(invers) | | 1 |
0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 |
(b)
A | A(invers) | | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
T10
(a)
Pembuktian:
A | B | A(invers) | A(invers) B | A+B | A+A(invers) B |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
(b)
Pembuktian:
A | B | A(invers) | A(invers)+B | A B | A(A(invers)+B) |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
T11. TheoremaDe Morgan's
(a)
A | B | A(invers) | B(invers) | A+B | (A+B)invers | A(invers) B(invers) |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
(b)
A | B | A(invers) | B(invers) | A B | (AB)invers | A(invers)+B(invers) |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
Tidak ada komentar:
Posting Komentar